
Multi-tier Data Synchronization Based on An Optimized

Concurrent Linked-list

Introduction

The development of multicore processors in recent years raises new
challenges in the development of efficient approaches to allow
concurrent threads to access shared resources safely. PackedObject is
a experimental enhancement introduced in IBM’s J9 Virtual Machine. It
organizes data in a multi-tier manner (like a C struct) in which the object
data is nested in its enclosing PackedObject instead of being pointed to
by an object reference. This multi-tier data structure brings the need and
new challenges for synchronization that allows multiple threads to lock
on the multi-tier data from different tiers and maintain consistency.

Multi-tier PackedObjects

• Packed object data model organizes data in a multi-tier manner.

• Each PackedObject has an object header containing the start
address (target+offset) of the packed data.

Challenges

• Multiple threads can arbitrarily access any level of the multi-tier
PackedObject concurrently.

• Multiple threads can arbitrarily update the data overlapped in different
tiers.

• Different threads are unaware of the containing relationship of the data
in different tiers

Multi-tier Data Synchronization Approach

• Use a linked list to keep track of the monitor information,
PackedMonitorInfo (PMI), for PackedObjects that share the same
packed data region.

• Multiple threads locking on the same packed data region traverse the
same linked list to find the associated monitor.

• Build a concurrent linked-list based on the lazy-list algorithm

• Optimize the lazy-list algorithm, mainly in two aspects:
• Postpone the physical deletion of nodes by using a predetermined

threshold to reduce unnecessary repetition of insertion/deletion.

• Reverse the locking order to reduce locking and traversal overhead when
the validation of pointers fail.

Future Work

• Explore other data structures (like trees) that could better represent
the containing relationship of different tiers of data.

• Build a multi-granularity locking scheme based on the new data
structure.

Bing Yang, Kenneth B. Kent, Eric Aubanel

University of New Brunswick, Faculty of Computer Science

Tobi Agila, Angela Lin

IBM Canada

{bing.yang, ken, aubanel}@unb.ca {atobia, angela_lin}@ca.ibm.com

@Packed class OneTierClass extends PackedObject

{

 int value;

}

@Packed class TwoTierClass extends PackedObject

{

 OneTierClass D;

 OneTierClass E;

}

@Packed class ThreeTierClass extends PackedObject

{

 OneTierClass B;

 TwoTierClass C;

}

ThreeTierClass A = PackedObject.newPackedObject(ThreeTierClass.class);

A:

Lock

Lock
A

B C

D E

Tier1:

Tier2:

Tier3:

B D E Header

C

Figure 1: Multi-tier Data structure of PackedObjects

B Header D E

C

Target|offset Target|offset

A:

Figure 2: Memory layout of derived and non-derived PackedObject

Figure 3: A monitorList associated with the PackedObject A

PMI(B) PMI(D) PMI(E)

MonitorList:

